Topics in the November 2007 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2007-N-2:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Shape of Atomic Orbitals and Quantum Numbers
- Material Properties (Polymers, Liquid Crystals, Metals, Ceramics)

2007-N-3:

Nuclear and Radiation Chemistry

2007-N-4:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Shape of Atomic Orbitals and Quantum Numbers

2007-N-5:

• Bonding - MO theory (larger molecules)

2007-N-6:

- Lewis Structures
- VSEPR

2007-N-7:

• Wave Theory of Electrons and Resulting Atomic Energy Levels

2007-N-8:

- Thermochemistry
- First and Second Law of Thermodynamics

2007-N-9:

- First and Second Law of Thermodynamics
- Electrolytic Cells

2007-N-10:

• Chemical Equilibrium

2007-N-11:

• Equilibrium and Thermochemistry in Industrial Processes

2007-N-12:

The University of Sydney

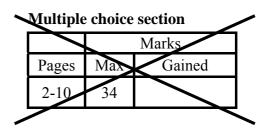
CHEMISTRY 1A - CHEM1101

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2007

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 12, 19 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	6			
13	6			
14	7			
15	5			
16	7			
17	6			
18	9			
20	5			
21	5			
22	5			
23	5			
Total	66			

• In the spaces provided, explain the meaning equation or diagram where appropriate.	ngs of the following terms. You may use an	Marks 4
(a) Hund's rule		
(b) node		_
(c) lyotropic liquid crystal		
(d) electron affinity		
Sketch the following wave functions as lo surfaces and nuclear positions.	be representations. Clearly mark all nodal	2
a π molecular orbital	a 2s atomic orbital	

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.

Marks 3

$$^{60}_{29}\mathrm{Cu}$$
 \rightarrow $+$ $^{0}_{+1}\mathrm{e}$

$$+ {}^{0}_{-1}e \longrightarrow {}^{55}_{25}Mn$$

 $^{28}_{14}\text{Si} + ^{2}_{11}\text{H} \rightarrow ^{29}_{15}\text{P} +$

• Calculate the following properties of the ¹³N nuclide, given that its half-life is 9.96 minutes.

3

(a) the decay constant in $\rm s^{-1}$

Answer:

(b) the molar activity in Ci mol⁻¹

Answer:

Calculate the energy (in J) and the waveler associated with an electronic transition from	ength (in nm) expected for an emission om $n = 4$ to $n = 2$ in the Be ³⁺ ion.	Marks 3
Energy:	Wavelength:	
What two properties do electrons in atoms Explain your answer.	s have which lead to discrete energy levels?	2
• What is the % transmission of a sample m spectrometer to have an absorbance of 0.5		2
	Answer:	

The following relate to the electronic structu	ure of the N ₂ ⁻ molecular ion.	
How many valence electrons are in N_2^- ?		
The molecular orbital energy level diagram provided shows the energies of the orbitals for the valence electrons in N_2^- . Indicate on this diagram the ground state electronic configuration of N_2^- using the arrow notation for electron spins.	$- \sigma^*$ $- \pi^*$	
	Energy π $ - \sigma^*$	
Calculate the bond order of N_2^- .		
Is the bond strength in N ₂ ⁻ stronger or weak	ter than the bond strength in N_2 ? Why?	
Do you expect N ₂ ⁻ to be paramagnetic? Exp	plain your answer.	

• Complete the table below showing the number of valence electrons, the Lewis structure and the predicted shape of each of the following species.

Marks 7

Formula	Total number of valence electrons	Lewis structure	Geometry of species
H ₂ O	8		V-shaped or bent
PCl ₃			
COS			
ICl ₃			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Ozone in the upper atmosphere absorbs lig What are the frequency (in Hz) and energy photons?		Marks 6
Frequency:	Energy:	-
Carbon-carbon bonds form the backbone of molecule. The average bond energy of the wavelength (in nm) of the least energetic	e C–C bond is 347 kJ mol ⁻¹ . Calculate the	
	Wavelength:	-
Compare this value to that absorbed by oz layer to prevent C–C bond disruption.	cone and comment on the ability of the ozone	

2007-N-8 22/07(a) CHEM1101

•	Normal table su		$_2O_{11}(s)$. Give the equation for the complete	Marks 9
	ingredients are v body is the same sweetener with a basis, it is 92% a	water and sucrose and that e as that obtained by comb a calorific value to human as sweet as sucrose. What	ntains 795 kJ of energy. Assume the only the energy obtained from sucrose by the bustion. Tagatose, $C_6H_{12}O_6$, is a low-calorie s of only 6.2 kJ g ⁻¹ . On a weight for weight t mass of tagatose would be needed to ame sweetness as a standard soft drink?	
		$\Delta_{\rm f} H^{\circ} (C_{12} H_{22} O_{11}(s)) = -22$		
		$\Delta_{\rm f}H^{\circ}\left({\rm CO}_2({\rm g})\right) = -393.5~{\rm k}$		
		$\Delta_{\rm f} H^{\circ} ({\rm H_2O}(1)) = -285.8 \text{ k.}$	J mol ⁻¹	
			Answer:	
	How much energ	gy will a person obtain fro	om this reduced-calorie can of soft drink?	
		1		
			Answer:	

•	Indicate the relative entropy of each Use: ">", "<", or "=".	h syste	m in the following pairs of systems.	Marks 2
	$CO_2(g)$		CO ₂ (s)	
	$O_2(g) + H_2O(l)$		O ₂ (aq)	
	hexane, C ₆ H ₁₄ (g)		pentane, C ₅ H ₁₂ (g)	
	$3O_2(g)$		2O ₃ (aq)	
•			MCl ₃ . A total charge of 3600 C is passed metal, M, at the cathode. What is the	3
		,		
			Answer:	

CHEWITIOI	2007-IN-10	22/07(a)
	aced in an otherwise empty container with a fixed as heated to 1705 K, at which temperature the followed.	
$2H_2O(g)$	$ ightharpoonup 2H_2(g) + O_2(g)$ $K_p = 1.89 \times 10^{-9} \text{ atm}$	n
Calculate K_c for this rea	ction at 1705 K.	
	$K_{\rm c} =$	
Determine the amount o	of O_2 (in mol) in the container at equilibrium at	1705 K.

Answer:

• Ammonia is produced industrially by the direct combination of nitrogen and hydrogen. Write a balanced equation for the production of ammonia.	Mark 5
$\Delta_f H^\circ$ for ammonia is -46 kJ mol^{-1} . A typical ammonia plant operates at a pressure of 250 atm and a temperature of 400 °C. Briefly explain the operation of an ammonia plant and the rationale for these conditions. What other "tricks of the trade" are used to maximise the production of ammonia?	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1101 2007-N-12 22/07(a)

	er equilibrium h	

22/07(b) November 2007

CHEM1101 - CHEMISTRY 1A DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^3	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	M				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	p							

22/07(b) CHEM1101 - CHEMISTRY 1A

November 2007

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2^+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2^+}(\operatorname{aq}) + 2e^- \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2^+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Fe^{2^+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^- \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry						
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	$Moles of e^- = It/F$						
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$E = -Z^2 E_R(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$a = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pK_{w} = pH + pOH = 14.00$	PV = nRT						
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pH = pK_a + log\{[A^-] / [HA]\}$							
Colligative properties	Kinetics						
$\pi = cRT$	$t_{1/2} = \ln 2/k$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_{\mathbf{a}}/RT}$						
p = kc	$\ln[A] = \ln[A]_{o} - kt$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 \qquad R \qquad T_1 \qquad T_2$						
Radioactivity	Thermodynamics & Equilibrium						
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$						
14 C age = 8033 $\ln(A_0/A_t)$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$						
Miscellaneous	Mathematics						
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $						
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$							

PERIODIC TABLE OF THE ELEMENTS

2 3 5 10 11 12 13 14 18 1 4 7 8 15 17 16 HELIUM HYDROGEN Н He 4.003 1.008 3 4 5 8 9 6 10 LITHIUM BERYLLIUM BORON CARBON NITROGEN OXYGEN FLUORINE NEON \mathbf{C} Li Be B N 0 Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 14 18 12 13 15 16 17 SODIUM MAGNESIUM ALUMINIUM SILICON PHOSPHORUS SULFUR CHLORINE ARGON Si Na S Cl Mg Al Ar 22.99 24.31 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUM CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE TRON COBALT NICKEL COPPER ZINC GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON K Ti \mathbf{V} Fe Ca Sc Cr Mn Co Ni Cu Zn Ge Se Br Kr Ga As 39.10 50.94 52.00 55.85 58.93 65.39 72.59 74.92 78.96 79.90 83.80 40.08 44.96 47.88 54.94 58.69 63.55 69.72 37 52 54 38 39 42 43 47 48 49 50 53 40 41 44 45 46 51 RUTHENIUM RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM RHODIUM PALLADIUM SILVER CADMIUM INDIUM ANTIMONY TELLURIUM IODINE XENON Rb Sr \mathbf{Y} Zr Nb Tc Ru Rh Pd \mathbf{Cd} Sn Sb Te Ι Xe Mo Ag In 85.47 87.62 88.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90 131.30 55 72 74 75 77 82 85 56 57-71 76 78 79 80 81 83 84 86 CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE RADON Hf \mathbf{W} Pb Cs Ba Ta Re Os Ir Pt Au Hg Tl Bi Po At Rn 132.91 137.34 178.49 180.95 183.85 186.2 190.2 192.22 195.09 196.97 200.59 204.37 207.2 208.98 [210.0] [210.0] [222.0] 87 88 89-103 109 104 105 106 107 108 110 111 FRANCIUM RADIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM ARMSTADTIUM ROENTGENIUM THERFORDIU DUBNIUM Rf Sg Hs Rg Fr Ra Db Bh Mt Ds [223.0] [226.0] [261] [262] [266] [262] [265] [266] [271] [272]

LANTHANIDES

ACTINIDES

DES	57 Lanthanum La	58 CERIUM Ce	59 PRASEODYMIUM Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 Samarium Sm	63 EUROPIUM Eu	64 GADOLINIUM Gd	65 теквіим Тb	66 Dysprosium Dy	67 ногмим Но	68 Erbium Er	69 THULIUM Tm	70 ytterbium Yb	71 Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
S	89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 curium	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
-	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]